Théorème de Gauss-Wantzel

Page d'aide sur l'homonymie Pour les articles homonymes, voir Théorème de Gauss et Théorème de Wantzel.

En géométrie, le théorème de Gauss-Wantzel énonce une condition nécessaire et suffisante pour qu'un polygone régulier soit constructible à la règle et au compas.

Énoncés

Un polygone à n côtés est constructible si et seulement si n est le produit d'une puissance de 2 (éventuellement 20 = 1) et d'un nombre (éventuellement nul) de nombres premiers de Fermat distincts.

(Un nombre premier est dit de Fermat s'il est de la forme 2(2k)+1 pour un certain entier k.)

Ce théorème se déduit de :

Théorème de Wantzel — Un nombre complexe est constructible si et seulement s'il appartient à une tour d'extensions quadratiques.

Histoire

Gauss avait énoncé cette condition nécessaire et suffisante dans le chapitre VII de ses Disquisitiones arithmeticae[1] publiées en 1801, mais n'avait démontré qu'une implication :Si un polygone régulier possède n côtés et si n est une puissance de 2 ou est le produit d'une puissance de 2 et de k nombres de Fermat premiers différents alors ce polygone est constructible. C'est une analyse sur les polynômes cyclotomiques qui permet la démonstration de cette implication[réf. nécessaire]. Il n'avait pas démontré la réciproque.

Pierre-Laurent Wantzel la démontre dans sa publication de 1837 grâce à son théorème et à la condition nécessaire qu'il en déduit pour qu'un nombre soit constructible.

Démonstration

Le théorème de Gauss-Wantzel se déduit du théorème de Wantzel en traduisant sur n la condition pour qu'une racine primitive n-ième de l'unité ζ appartienne à une tour d'extensions quadratiques. On démontre dans l'article « Tour d'extensions quadratiques » qu'une condition nécessaire et suffisante pour cela est que le degré φ(n) de l'extension cyclotomique ℚ(ζ) soit une puissance de 2.

Or si la décomposition de n en facteurs premiers est

Résultats détaillés

Les n-gones réguliers constructibles, pour n ≤ 51.

Les cinq nombres de Fermat premiers connus sont :

F0 = 3, F1 = 5, F2 = 17, F3 = 257, et F4 = 65537 (suite A019434 de l'OEIS).

Ainsi un polygone à n côtés est constructible à la règle et au compas si :

n = 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, ... (suite A003401 de l'OEIS).

Tandis qu'il n'est pas constructible si :

n = 7, 9, 11, 13, 14, 18, 19, 21, 22, 23, 25,... (suite A004169 de l'OEIS).

Par exemple, la construction (à la règle et au compas) de l'heptagone régulier n'est pas possible car le nombre premier 7 n'est pas de Fermat. L'entier 9 = 32 est le carré d'un nombre premier de Fermat, donc l'ennéagone régulier n'est pas constructible non plus.

Notes et références

  1. C. F. Gauss (trad. M. Poullet-Delisle), Recherches arithmétiques, Courcier, (lire sur Wikisource), p. 429-489.