Repère affine

Article général Pour des articles plus généraux, voir Géométrie affine et Affinité (mathématiques).

En géométrie affine un repère affine d'un espace affine permet d'associer de façon bi-univoque à tout point de l'espace, un ensemble de coordonnées à valeurs dans le corps sur lequel se trouve défini l'espace vectoriel associé. Une application affine est définie et entièrement déterminée par l'image d'un repère affine.

La terminologie n'est pas exactement fixée : sous le nom de repère affine, on trouve deux notions distinctes mais fortement liées. Pour la première un repère affine, dit aussi dans ce cas repère cartésien, est constitué d'un point de l'espace affine considéré et d'une base de l'espace vectoriel associé. Pour la seconde, un repère affine, dit aussi dans ce cas base affine, est la donnée ordonnée de points de l'espace affine, tels que l'ensemble des points n'est pas contenu dans un autre espace affine que l'espace entier (famille génératrice) et qu'aucun point n'appartient au sous-espace affine engendré par les points restant (famille affinement libre, ou points affinement indépendants). Un repère cartésien permet très facilement de définir une base affine et réciproquement.

Dans le cas d'un espace affine de dimension finie n, un repère affine au sens de repère cartésien est constitué d'un point et de n vecteurs (dans un certain ordre), un repère affine au sens base affine est constitué de n + 1 points, là aussi dans un ordre déterminé.

Les coordonnées cartésiennes s'expriment naturellement dans un repère affine au sens repère cartésien, et les coordonnées barycentriques s'expriment naturellement dans un repère affine au sens base affine, dit d'ailleurs parfois repère barycentrique.

Repère affine ou cartésien

Définition

Dans un espace affine où l'espace vectoriel porte sa structure sur le corps K, un repère affine, ou repère cartésien[1], est un couple

,

est un point de (appelé origine du repère), et est une base quelconque de .

Tout point de , est repéré par ses coordonnées cartésiennes dans le repère  : ce sont les coordonnées du vecteur dans la base de . Quand est de dimension finie n la base s'écrit et on a :

est un repère cartésien de l'espace affine E, un repère affine au sens précédent, les deux notions étant donc intimement liées.

Tout point d'un espace affine est barycentre des points d'un repère barycentrique, la liste des coefficients barycentriques est unique à un facteur multiplicatif près (unique si on pose que la somme des coefficients doit être 1) ce sont les coordonnées barycentriques.

Dimension finie

En dimension finie n, toutes les bases affines ont même cardinal n + 1, toutes les familles affinement libres ont un cardinal au plus égal à n + 1, toutes les familles génératrices ont un cardinal au moins égal à n + 1. Ces propriétés se déduisent de celles analogues pour les bases, famille libre et famille génératrice vectorielles par les équivalences des paragraphes précédents.

En particulier une base affine est une famille libre de n + 1 points, soit (A0, ... , An) vérifiant l'une des conditions du paragraphe #Famille affinement libre. Ainsi :

  • une base affine d'une droite affine est constituée de 2 points distincts de celle-ci ;
  • une base affine d'un plan affine est constituée de 3 points non alignés ;
  • une base affine d'un espace affine de dimension 3 est constitué de 4 points non coplanaires.

Notes et références

  1. On trouve cette définition de repère affine ou cartésien par exemple dans Ladegaillerie 2003, p. 19.
  2. Fresnel 1996 parle de repère ou base affine, la notion précédente étant appelée repère cartésien,.Lelong-Ferrand 1985 utilise également repère affine,.Ladegaillerie 2003 utilise base affine pour cette notion et réserve repère affine pour la précédente.
  3. Fresnel 1996, p. 11
  4. Voir Fresnel 1996, p. 11 ou Ladegaillerie 2003, p. 27

Voir aussi

Articles connexes

Bibliographie

  • Jean Fresnel, Méthodes modernes en géométrie, Hermann, (ISBN 2 7056 1437 0).
  • Yves Ladegaillerie, Géométrie affine, projective, euclidienne et anallagmatique, Ellipses, (ISBN 2-7298-1416-7).
  • Jacqueline Lelong-Ferrand, Fondements de la géométrie, PUF, (ISBN 2-13-038851-5).