Polymère
English: Polymer

Fibres de polyester observées au MEB
La fabrication d'une éolienne fait intervenir le moulage de composites résines/renforts.

Les polymères (étymologie : du grec polus, plusieurs, et meros, partie) constituent une classe de matériaux. D'un point de vue chimique, un polymère est une macromolécule[1] (molécule constituée de la répétition de nombreuses sous-unités).

Les polymères les plus connus sont :

Ils sont très utilisés pour les matrices des matériaux composites.

Ils ont les propriétés générales suivantes :

  • ce sont des matériaux « légers », ils ont une masse volumique faible (en général inférieure à 1 500 kg·m-3, soit une densité par rapport à l'eau inférieure à 1,5) ;
  • ils sont en général souples, les polymères thermoplastiques ont un module de Young inférieur à environ 3 GPa, comparé à environ 20 GPa pour les bétons, 70 GPa pour l'aluminium et 200 GPa pour l'acier ;
  • ils ne sont stables qu'à des températures modérées. La plupart des polymères thermoplastiques se ramollissent ou fondent à des températures comprises entre 100 °C et 250 °C ; un polymère est dit « thermostable » s'il résiste à 300 °C durant quelques instants, la plupart des polymères se dégradent à des températures supérieures ;
  • ce sont des isolants électriques et thermiques, sauf cas particuliers.

Les propriétés sont déterminées par :

  • la nature chimique des macromolécules, et en particulier des liaisons qui peuvent s'établir entre les atomes de la chaîne et des chaînes voisines ; les liaisons interatomiques peuvent être souples ou rigides, faibles ou fortes ;
  • la « forme » de la macromolécule : il peut s'agir d'une chaîne linéaire longue ou courte, ou bien d'une structure ramifiée, réticulée. Les macromolécules peuvent se placer au hasard ou bien sont alignées. Elles peuvent s'imbriquer pour former des cristallites ;
  • la formulation (nature, taux des ingrédients) : outre les macromolécules, on introduit divers constituants (charge éventuellement renforçante, plastifiant, antioxydant, durcisseur, système de vulcanisation pour un élastomère, agent anti-ozonant, ignifugeant, colorant, déshydratant, agent de mise en œuvre, conducteur électrique, etc.).

Les polymères de synthèse sont devenus l'élément essentiel d'un nombre très important d'objets de la vie courante, dans lesquels ils ont souvent remplacé les substances naturelles. Ils sont présents dans de nombreux domaines industriels.

Il existe une corrélation étroite entre le produit national brut (PNB) d'un pays et sa consommation de polymères[2].

Historique

Les polymères naturels ont été parmi les premiers matériaux utilisés par l'Homme : bois et fibres végétales, cuir, tendons d'animaux, laine, etc.

La notion de macromolécule n'est apparue que tardivement dans l'histoire de la chimie. Bien que présagée par Wilhelm Eduard Weber ou encore Henri Braconnot au début du e siècle, de nombreux chercheurs ne voient là que des agrégats ou micelles. Le terme « polymère » est utilisé pour la première fois en 1866 par Marcellin Berthelot[3]. La vulcanisation du caoutchouc en 1844 et la production de la Bakélite en 1910 figurent parmi les premières applications industrielles. Mais il faut attendre les années 1920-1930 pour que l'idée de macromolécule soit acceptée, notamment grâce aux travaux d'Hermann Staudinger.

Le développement industriel consécutif de la science macromoléculaire a été accéléré ensuite par la Seconde Guerre mondiale. Les États-Unis ont été privés lors de leur entrée en guerre de leur approvisionnement en caoutchouc naturel en provenance d'Asie du Sud-Est. Ils ont alors lancé un immense programme de recherche visant à trouver des substituts de synthèse.

Procédés de mise en œuvre

Pour répondre à toutes les exigences en termes de formes et de cadences, plusieurs méthodes de mise en forme des matériaux polymères ont été développées, dont :

Concernant les plastiques renforcés, une quinzaine de procédés de mise en œuvre est de nos jours disponible (pultrusion…).

Galerie

Exemples

Polymères naturels

Polymères artificiels

Polymères synthétiques

Formule de quelques grands polymères industriels[5]

Mélanges polymère-polymère

Article détaillé : Mélange de polymères.

Les mélanges polymère-polymère thermoplastiques (en anglais, polyblend ; « alliage » est un terme impropre) sont des mélanges mécaniques intimes de deux (ou plusieurs) polymères différents et compatibles. À la différence des copolymères, il ne se forme pas de liaison chimique. Exemples :

  • PPO/PS : le PS apporte la facilité de mise en œuvre et réduit le coût. Voir Noryl ;
  • PP/EPDM : élastomère thermoplastique ; l'EPDM apporte la tenue aux chocs à froid ;
  • PC/ABS : amélioration de la rigidité, de la tenue aux chocs et au feu (marques Bayblend, Pulse, Anjablend A).

Notion de macromolécule

Un polymère tridimensionnel est constitué d'une seule macromolécule qui se développe dans les trois directions de l'espace[8] ; cette macromolécule tridimensionnelle atteint des dimensions macroscopiques (ex. : un phénoplaste).

Une macromolécule est une molécule de masse moléculaire élevée, généralement constituée par la répétition d'atomes ou de groupes d'atomes, appelés unités constitutives et dérivant, de fait ou conceptuellement[9], de molécules de faible masse moléculaire[1].

Dans de nombreux cas, une molécule peut être considérée comme ayant une masse moléculaire élevée lorsque l'addition ou la suppression d'une ou de quelques unités n'a qu'un effet négligeable sur les propriétés moléculaires[1].

En fait, il n'existe que très peu d'exemples de macromolécules qui ne soient obtenues par la répétition d'une unité structurale[10]. On les trouve plutôt dans le domaine des macromolécules naturelles, certaines protéines notamment[11].

Le terme polymère a encore actuellement plusieurs définitions selon le point de vue qu'on adopte. On peut encore trouver les oligomères (qui ne sont pas constitués de macromolécules) inclus dans la famille des polymères[12]. Auparavant, et encore récemment, les polymères proprement dits (au sens actuel du terme) étaient aussi appelés « hauts polymères »[13],[14]. On peut noter que l'expression « degré de polymérisation » est toujours utilisée pour désigner le nombre d'unités monomères aussi bien d'une macromolécule que d'une molécule oligomère[15].

Un polymère est organique (le plus souvent) ou inorganique.

Il est issu de l'enchaînement covalent d'un grand nombre de motifs monomères identiques ou différents.

Un polymère peut être naturel (ex. : polysaccharides, ADN) ; artificiel, obtenu par modification chimique d'un polymère naturel (ex. : acétate de cellulose, méthylcellulose, galalithe) ; ou synthétique, préparé par polymérisation de molécules monomères (ex. : polystyrène, polyisoprène synthétique).

Les polyoléfines, représentées principalement par les polymères thermoplastiques de grande consommation polyéthylène et polypropylène, constituent la plus importante famille de polymères.

Généralités

Un polymère peut se présenter sous forme liquide (plus ou moins visqueux) ou solide à température ambiante. À l'état solide, il peut être utilisé comme matériau moyennant des propriétés mécaniques suffisantes[16]. Un polymère liquide à température ambiante peut être transformé en matériau s'il est réticulable ; les élastomères sont des matériaux obtenus par réticulation de polymères linéaires liquides à température ambiante.

Les polymères ont un comportement viscoélastique. En effet, ils démontrent simultanément des propriétés élastiques et un caractère visqueux.

L'enchaînement des motifs monomères peut se faire de façon linéaire (polymères linéaires), présenter des ramifications aléatoires (polymères branchés et hyperbranchés) ou systématiques et régulières (dendrimères).

Du fait des degrés de liberté de la conformation (disposition dans l'espace) de chaque motif monomère, la conformation du polymère résulte de cet enchaînement mais également des interactions entre motifs.

Les polymères fabriqués à partir d'un seul type de monomère sont désignés par homopolymère (ex. : polyéthylène, polystyrène). Dès qu'au moins deux types de monomère participent à la formation des macromolécules, on parlera de copolymères (cas du styrène-butadiène). La variété des copolymères est très importante. Ces matériaux possèdent des propriétés physico-chimiques et mécaniques intermédiaires avec celles obtenues sur les homopolymères correspondants.

On distingue deux grandes catégories de réactions chimiques permettant la préparation des polymères : la polymérisation en chaîne ou polyaddition (pour produire par exemple le polyéthylène, le polypropylène, le polystyrène) et la polymérisation par étapes ou polycondensation (pour synthétiser par exemple le poly(téréphtalate d'éthylène), de sigle PET).

Le terme « polymère » désigne des matières abondantes et variées : des protéines les plus ténues aux fibres de Kevlar haute résistance. Certains polymères sont utilisés en solution par exemple dans les shampooings ; d'autres forment des matériaux solides.

Pour ces applications, les polymères sont généralement mélangés à d'autres substances – charges telles la craie (matière très bon marché), plastifiants, additifs tels les antioxydants, etc. – dans des opérations de formulation. La fabrication des objets finis résulte la plupart du temps d'une opération de mise en œuvre qui relève souvent du domaine de la plasturgie.

Classification

Types de polymères
Article détaillé : Classification des polymères.

Les polymères sont souvent classés d'après leurs propriétés thermomécaniques. On distingue :

La description des polymères en tant qu'objet physique permettant de comprendre leurs propriétés relève de la physique statistique.

Structure et conformation

Séquence primaire

Les polymères sont des substances composées de macromolécules résultant de l'enchaînement covalent (voir Liaison covalente) de motifs de répétition identiques ou différents les uns des autres. La masse molaire de ces molécules dépasse souvent 10 000 g/mol. Les liaisons covalentes constituant le squelette macromoléculaire sont le plus souvent des liaisons carbone-carbone (cas du polyéthylène, du polypropylène, etc.), mais peuvent également résulter de la liaison d'atomes de carbone avec d'autres atomes, notamment l'oxygène (cas des polyéthers et des polyesters) ou l'azote (cas des polyamides). Il existe aussi des polymères pour lesquels l'enchaînement résulte de liaisons ne comportant pas d'atomes de carbone (polysilanes, polysiloxanesetc.).

Cet enchaînement de motifs répétés présente chez les polymères les plus simples une structure linéaire, un peu comme un collier de perles. On peut également rencontrer des chaînes latérales (elles-mêmes plus ou moins branchées), résultant soit d'une réaction chimique parasite au cours de la synthèse du polymère (par exemple dans le cas du polyéthylène basse densité ou PEBD), soit d'une réaction de greffage pratiquée volontairement sur le polymère pour en modifier les propriétés physico-chimiques.

Dans le cas où la macromolécule est composée de la répétition d'un seul motif – ce qui résulte le plus souvent de la polymérisation d'un seul type de monomère –, on parle d'homopolymères. Si au moins deux motifs différents sont répétés, on parle de copolymères. Voir aussi Terpolymère.

On distingue ensuite plusieurs types de copolymères suivant la manière dont les motifs monomères sont répartis dans les chaînes moléculaires :

  • dans le cas le plus fréquent, on a un copolymère statistique, où les différents motifs monomères se mélangent en fonction de la réactivité et de la concentration de ceux-ci. Les propriétés mécaniques sont alors moyennées ;
  • en revanche, dans un copolymère séquencé (l'anglicisme copolymère à blocs est parfois utilisé) ou un copolymère alterné, il peut y avoir combinaison des propriétés mécaniques.
Differents copolymeres.png

Il existe parfois des liaisons covalentes vers d'autres parties de chaînes polymères. On parle alors de molécules « branchées » ou ramifiées. On sait synthétiser par exemple des molécules en peigne ou en étoile. Lorsque de nombreuses chaînes ou chaînons ont été réunis par un certain nombre de liaisons covalentes, ils ne forment plus qu'une macromolécule gigantesque ; on parle alors de réseau macromoléculaire ou de gel.

Cohésion

Les forces qui assurent la cohésion de ces systèmes sont de plusieurs types : interactions de van der Waals ou liaisons hydrogène. Leur intensité est respectivement de 2 à 16 kJ·mol-1, et 40 kJ·mol-1. Il existe également des interactions liées aux charges.

La densité d'énergie cohésive (valeurs tabulées) permet d'avoir une idée de la cohésion des polymères.

Polymères linéaires

Lors de la réaction de polymérisation, lorsque chaque unité monomère est susceptible de se lier à deux autres, la réaction produit une chaîne linéaire. Typiquement, ce cas est celui des polymères thermoplastiques.

Du fait des degrés de liberté de la conformation de chaque unité monomère, la façon dont la chaîne occupe l'espace n'est cependant pas rectiligne.

Notion de maillon statistique

Chaque unité monomère présente une certaine rigidité. Souvent, cette rigidité influence l'orientation de l'unité monomère voisine. Toutefois, cette influence s'estompe au fur et à mesure que l'on s'éloigne de l'unité monomère initiale et finit par disparaître au-delà d'une distance , dite « longueur d'un maillon statistique de la chaîne ». Techniquement, cette longueur est la longueur de corrélation de l'orientation d'un maillon. Elle se nomme longueur de persistance du polymère.

Ayant introduit cette notion, il est alors possible de renormaliser la chaîne en considérant maintenant le maillon statistique comme son motif élémentaire. Pour décrire la conformation de cette chaîne, les particularités propres à la structure chimique du motif monomère n'interviennent plus.

Chaîne idéale (ou gaussienne)

Le cas le plus simple est celui de l'enchaînement linéaire de maillons n'exerçant pas d'interaction entre eux. À l'état liquide, la chaîne adopte dans l'espace une conformation qui pour une molécule donnée change sans cesse du fait de l'agitation thermique. À l'état de solide amorphe ou à un instant donné dans le cas d'un liquide, la conformation des chaînes est différente d'une molécule à l'autre. Cette conformation obéit néanmoins à des lois statistiques.

Soit dans la séquence primaire de la chaîne un maillon donné pris pour origine. Lorsque les maillons n'interagissent pas, la probabilité que le maillon de la chaîne soit à une distance de l'origine obéit à une loi normale ou loi Gaussienne de moyenne nulle et de variance . Une longueur caractéristique de la chaîne est la distance entre ses deux extrémités (dite « distance bout-à-bout »). La moyenne arithmétique de est nulle. Ainsi, pour caractériser la taille de la pelote que forme la chaîne, il faut considérer la moyenne quadratique, notée ici .

(***) Certains polymères sont obtenus par modification chimique d'autres polymères de telle façon que l'on puisse penser que la structure des macromolécules qui constitue le polymère a été formée par homopolymérisation d'un monomère hypothétique. Ces polymères peuvent être considérés comme étant des homopolymères. C'est le cas du poly(alcool vinylique)[21].

(****) De nombreux polymères sont obtenus par réaction entre monomères mutuellement réactifs. Ces monomères peuvent facilement être visualisés comme ayant réagi pour donner un monomère implicite dont l'homopolymérisation conduirait à un produit qui peut être vu comme un homopolymère[21]. Le poly(téréphtalate d'éthylène) est obtenu par réaction entre l'acide téréphtalique (acide dicarboxylique) et l'éthylène glycol (diol) ; ces monomères ont réagi pour donner un monomère implicite.

Notes et références

  1. a b et c Voir les définitions du glossaire IUPAC : IUPAC : polymer », Compendium of Chemical Terminology [« Gold Book »], IUPAC, 1997, version corrigée en ligne :  (2006-), 2e éd.
    et (en) « macromolecule (polymer molecule) », Compendium of Chemical Terminology [« Gold Book »], IUPAC, 1997, version corrigée en ligne :  (2006-), 2e éd.
    et leurs adaptations en langue française dans le JORF du 1er mars 2002 : JORF du 1er mars 2002 : Termes généraux de la chimie.
  2. Jean-Pierre Mercier, Gérald Zambelli, Wilfried Kurz, « Introduction à la science des matériaux », PPUR, 3e éd., 1999
  3. Service de Sciences des Polymères, « Printemps des Sciences 2010 - Les polymères - Université libre de Bruxelles » [PDF], sur inforsciences8.ulb.ac.be, (consulté le 3 novembre 2015)
  4. a et b La typographie - Marques de commerce »,
  5. Le PA-6 (polycaprolactame) appartient à la famille des polymères thermoplastiques techniques (ceux-ci possèdent des caractéristiques mécaniques élevées et sont très onéreux).
  6. (en) Charles E. Wilkes, James W. Summers et Charles Anthony Daniels, PVC Handbook, Munich, Hanser Verlag, (ISBN lire en ligne), p. 14
  7. À la différence des copolymères homogènes (statistiques ou alternés), les polymères séquencés (polymères blocs) présentent deux températures de transition vitreuse, identiques à celles mesurées sur les homopolymères correspondants.
  8. Bulletin de l'union des physiciens, no 790-791 (consacré aux matériaux), janvier - février 1997, § Macromolécules ou polymères tridimensionnels, Bulletin de l'union des physiciens, no 790-791 (consacré aux matériaux), janvier - février 1997, § Macromolécules ou polymères tridimensionnels, Voir l'article [PDF].
  9. 1er exemple : l'alcool polyvinylique, de formule -(CH2CHOH)n-, n'est pas obtenu par polymérisation de l'énol de formule H2C=CHOH (éthénol), qui est instable ; la molécule d'éthénol est la molécule monomère conceptuelle, mais pas réelle ; cf. Traité des Matériaux, vol. 13, Chimie des polymères, J.-P. Mercier, E. Maréchal, PPUR, 1996 (ISBN 978-2-88074-240-9) p. 382, 383 (E. Maréchal a contribué à la préparation du Glossaire des termes de base en science des polymères (Recommandations 1996)).
    2e exemple, choisi parmi les composés inorganiques : dans le cas des silicones (composés macromoléculaires ou oligomères) de formule générale -(R2SiO)n-, les molécules monomères conceptuelles R2Si=O n'existent pas (elles n'ont jamais pu être isolées) ; source : Chimie inorganique, Huheey. Keiter & Keiter, De Boeck Université, 1996, p. 749 (ISBN 978-2-8041-2112-9) ; voir le titre « Fabrication » dans l'article « Silicone ».
    3e exemple : un certain nombre de polymères sont obtenus par réaction entre deux monomères polyfonctionnels, par exemple l'hexaméthylènediamine H2N-(CH2)6-NH2 et l'acide adipique HOOC-(CH2)4-COOH. La réaction s'effectue par étapes ; la première étape conduit à un dimère de formule H2N-(CH2)6-NH-CO-(CH2)4-COOH (>N-CO- est le groupe caractéristique des amides), selon l'équation :
    H2N-(CH2)6-NH2 + HOOC-(CH2)4-COOH → H2N-(CH2)6-NH-CO-(CH2)4-COOH + H2O.
    Ce dimère, qui porte une fonction amine primaire -NH2 à une extrémité et une fonction acide carboxylique -COOH à l'autre, peut être vu comme un monomère implicite, dont la polymérisation conduit au polyamide 6-6.
  10. Une unité constitutive de répétition est la plus petite unité constitutive dont la répétition constitue une macromolécule régulière ; pour plus de détails, voir les définitions 1.4, 1.8, 1.14 et 1.15 dans le IUPAC : Glossaire des termes de base en science des polymères (Recommandations 1996). Dans la version en anglais, on utilise l'abréviation CRU pour désigner cette unité structurale (voir la Glossaire des termes de base en science des polymères (Recommandations 1996). Dans la version en anglais, on utilise l'abréviation CRU pour désigner cette unité structurale (voir la Analyse physico-chimique des polymères).
  11. Phrases extraites de l'ouvrage : Chimie Organique - Une initiation, J.-P. Mercier, P. Godard, PPUR, 1995 (ISBN 978-2-88074-293-5) p. 237
  12. Voir par exemple ce cours de Faculté de médecine : « Structures fonctions » (2002 - 2003)
  13. « La polymérisation consiste en la réunion les unes aux autres des molécules d'un composé simple, appelé le monomère, pour donner, sans aucune élimination, un composé de poids (sic) moléculaire plus élevé (multiple entier de celui du monomère), appelé polymère. Le nombre de molécules de monomères soudées les unes aux autres peut être très grand (plusieurs centaines, et même plusieurs milliers) ; on parle alors de haut polymère » ; phrases extraites de l'ouvrage : « Cours de chimie organique », P. Arnaud, Gauthier-Villars, 1966, p. 288.Ou encore : « oligo : préfixe signifiant « peu » et utilisé pour les composés comportant un nombre d'unités répétitives intermédiaire entre celui des monomères et des hauts polymères » ; source : R. Panico et al., Nomenclature et terminologie en chimie organique - Classes fonctionnelles. Stéréochimie, Techniques de l'ingénieur, 1996, p. 66 (ISBN 2-85-059-001-0).
  14. Voir également J. Angenault La Chimie : dictionnaire encyclopédique, Paris, Dunod, 1995 (ISBN 2-10-002-497-3) ; consulter notamment les articles cellulose et polymérisation (degré de).
  15. Glossaire IUPAC : IUPAC : degree of polymerization », Compendium of Chemical Terminology [« Gold Book »], IUPAC, 1997, version corrigée en ligne :  (2006-), 2e éd.
  16. Traité des matériaux, vol. 1, 3e éd., Introduction à la science des matériaux, PPUR (1999) (ISBN 978-2-88074-402-1) p. 1, 344, 345.
  17. (en) Pierre-Gilles de Gennes, Scaling concepts in polymer physics, Cornell University Press, 1993, 4e éd., 324 p. (ISBN 978-0-8014-1203-5)
  18. 1. Glossaire des termes de base en science des polymères (Recommandations 1996)
    Glossary of basic terms in polymer science ((en), version originale du document précédent)
    Nomenclature des polymères, d'après les recommandations de l'IUPAC 2001
    [PDF] Nomenclature des polymères organiques monocaténaires réguliers, 2002 (en)
    R. Panico, J.-C. Richer, Nomenclature IUPAC des composés organiques, Masson (1994) (ISBN 978-2-225-84479-9
    )
    2. JORF : JORF : Termes généraux de la chimie
    Vocabulaire des polymères (version abrégée du document précédent).
  19. Constitutional repeating unit (CRU)
  20. a et b (en) [PDF] Nomenclature des polymères organiques monocaténaires réguliers, Recommandations IUPAC 2002. Voir le tableau en annexe : « 11.2 Structure- and source-based names for common polymers »
  21. a et b Voir les définitions 2.4 et 3.3, homopolymères et homopolymérisation dans le Glossaire des termes de base en science des polymères (Recommandations 1996).

Annexes

Sur les autres projets Wikimedia :

Articles connexes

Liens externes

Bibliographie

  • (en) J.M.G. Cowie et Valeria Arrighi, Polymers: Chemistry and Physics of Modern Materials, CRC Press, 2007, 3e éd., 499 p. (ISBN 978-0-8493-9813-1)
  • J.-L. Halary et F. Lauprêtre, De la macromolécule au matériau polymère, Belin, coll. Échelles, 2006, 334 p. (ISBN 978-2-7011-3422-2)
  • J.-L. Halary, F. Lauprêtre et L. Monnerie, Mécanique des matériaux polymères, Belin, coll. Échelles, 2008, 432 p. (ISBN 978-2-7011-4591-4)
  • Rémi Deterre et Gérard Froyer, Introduction aux matériaux polymères, Paris, Tec & Doc Lavoisier, , 212 p. (ISBN 2-7430-0171-2)
  • Michel Fontanille et Yves Gnanou, Chimie et physico-chimie des polymères, Dunod, coll. « Sciences Sup », , 3e éd., 576 p. (ISBN 978-2-10-058915-9)