Matrice (mathématiques)

Page d’aide sur l’homonymie L’article Théorie des matrices présente des applications pratiques des matrices.
Page d'aide sur l'homonymie Pour les articles homonymes, voir Matrice.
Matrice.svg

En mathématiques, les matrices sont des tableaux de nombres qui servent à interpréter en termes calculatoires et donc opérationnels les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.

Historique

Histoire de la notion de matrice

Bien que le calcul matriciel proprement dit n'apparaisse qu'au début du e siècle, les matrices, en tant que tableaux de nombres, ont une longue histoire d'applications à la résolution d'équations linéaires. Le texte chinois Les Neuf Chapitres sur l'art mathématique, écrit vers le IIe siècle IIe siècle av. J.-C., est le premier exemple connu de l'utilisation de tableaux pour résoudre des systèmes d'équations[1], introduisant même le concept de déterminant. En 1545, Girolamo Cardano fait connaître cette méthode en Europe en publiant son Ars Magna[2]. Le mathématicien japonais Seki Kōwa utilise indépendamment les mêmes techniques pour résoudre des systèmes d'équations en 1683[3]. Aux Pays-Bas, Johan de Witt représente des transformations géométriques à l'aide de tableaux dans son livre de 1659, Elementa curvarum linearum[2]. Entre 1700 et 1710, Leibniz montre comment utiliser les tableaux pour noter des données ou des solutions, et expérimente plus de 50 systèmes de tableaux à cet effet[2]. En 1750, Gabriel Cramer publie la règle qui porte son nom[4].

En 1850, le terme de « matrix » (qui sera traduit par matrice) est forgé (sur la racine latine mater) par James Joseph Sylvester[5], qui le voit comme un objet donnant naissance à la famille de déterminants actuellement appelés mineurs, c'est-à-dire les déterminants des sous-matrices obtenues en retirant des lignes et des colonnes. Dans un article de 1851, Sylvester précise :

« Dans des articles antérieurs, j'ai appelé matrix un tableau rectangulaire de termes à partir desquels plusieurs systèmes de déterminants peuvent être engendrés, comme issus des entrailles d'un parent commun »[6].

En 1854, Arthur Cayley publie un traité sur les transformations géométriques utilisant les matrices de façon beaucoup plus générale que tout ce qui a été fait avant lui. Il définit les opérations usuelles du calcul matriciel (addition, multiplication et division) et montre les propriétés d'associativité et de distributivité de la multiplication[2]. Jusque-là, l'utilisation des matrices s'était essentiellement limitée au calcul des déterminants ; cette approche abstraite des opérations sur les matrices est révolutionnaire. En 1858, Cayley publie son A Memoir on the Theory of Matrices[7],[8], dans lequel il énonce et démontre le théorème de Cayley-Hamilton[2] pour les matrices 2×2.

Beaucoup de théorèmes ne sont d'ailleurs démontrés au début que pour de petites matrices : après Cauchy, Hamilton généralise le théorème aux matrices 4×4, et ce n'est qu'en 1898 que Frobenius, étudiant les formes bilinéaires, démontre le théorème en dimension quelconque. C'est aussi à la fin du e siècle que Wilhelm Jordan établit la méthode d'élimination de Gauss-Jordan (généralisant la méthode de Gauss pour les matrices échelonnées). Au début du e siècle, les matrices occupent une place centrale en algèbre linéaire[9], en partie grâce au rôle qu'elles jouent dans la classification des systèmes de nombres hypercomplexes du siècle précédent.

Un mathématicien anglais du nom de Cullis est le premier, en 1913, à utiliser la notation moderne des crochets (ou des parenthèses) pour représenter les matrices, ainsi que de la notation systématique A = [ai,j] pour représenter la matrice dont ai,j est le terme de la i-ème ligne et de la j-ème colonne[2].

La formulation de la mécanique quantique au moyen de la mécanique matricielle, due à Heisenberg, Born et Jordan, amena à étudier des matrices comportant un nombre infini de lignes et de colonnes[10]. Par la suite, von Neumann précisa les fondements mathématiques de la mécanique quantique, en remplaçant ces matrices par des opérateurs linéaires sur des espaces de Hilbert.

Histoire des déterminants

Article détaillé : Histoire des déterminants

L'étude théorique des déterminants vient de plusieurs sources[11]. Des problèmes de théorie des nombres amènent Gauss à relier à des matrices (ou plus précisément à leur déterminant) les coefficients d'une forme quadratique ainsi que les applications linéaires en dimension trois. Gotthold Eisenstein développe ces notions, remarquant en particulier qu'en notation moderne, le produit des matrices est non-commutatif. Cauchy est le premier à démontrer des résultats généraux sur les déterminants, en utilisant comme définition du déterminant de la matrice A = [ai,j] le résultat de la substitution, dans le polynôme

Le calcul effectif de cette exponentielle se fait par réduction de la matrice.

L'exponentielle joue un rôle central dans l'étude des systèmes linéaires d'équations différentielles.

Notes et références

  1. Chapitre 8 : Fang cheng - La disposition rectangulaire : problèmes à plusieurs inconnues, résolus selon un principe similaire à l'élimination de Gauss.
  2. a b c d e et f (en) Discrete Mathematics 4th Ed. Dossey, Otto, Spense, Vanden Eynden, Addison Wesley, 10 octobre 2001, (ISBN 978-0321079121) (pages 564-565).
  3. (en) Joseph Needham et Wang Ling, Science and Civilisation in China, vol. III, Cambridge, Cambridge University Press, (ISBN lire en ligne), p. 117.
  4. Gabriel Cramer, Introduction à l'Analyse des lignes courbes algébriques, Genève, Europeana, (lire en ligne), p. 656–659.
  5. De nombreuses sources affirment qu'il l'aurait fait en 1848, mais Sylvester n'a rien publié cette année-là. (voir The Collected Mathematical Papers of James Joseph Sylvester (Cambridge, England: Cambridge University Press, 1904), vol. 1.). Sa première utilisation du terme matrix, en 1850, figure dans Additions to the articles in the September number of this journal, “On a new class of theorems,” and on Pascal's theorem, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 37 : 363-370. (1850), page 369 : « For this purpose we must commence, not with a square, but with an oblong arrangement of terms consisting, suppose, of m lines and n columns. This will not in itself represent a determinant, but is, as it were, a Matrix out of which we may form various systems of determinants […] ».
  6. « I have in previous papers defined a “Matrix” as a rectangular array of terms, out of which different systems of determinants may be engendered as from the womb of a common parent » dans The Collected Mathematical Papers of James Joseph Sylvester : 1837–1853, Article 37, p. 247.
  7. Phil. Trans. 1858, vol. 148, pp. 17-37 Math. Papers II 475-496.
  8. Jean Dieudonné, Abrégé d'histoire des mathématiques 1700-1900, Paris, FR, Hermann, .
  9. (en) Maxime Bôcher, Introduction to Higher Algebra, New York, NY, Dover Publications, (ISBN 978-0-486-49570-5).
  10. (en) Jagdish Mehra et Helmut Rechenberg, The Historical Development of Quantum Theory, Berlin, DE; New York, NY, Springer-Verlag, (ISBN 978-0-387-96284-9).
  11. (en) Eberhard Knobloch, The intersection of history and mathematics, vol. 15, Basel, Boston, Berlin, Birkhäuser, , chap. From Gauss to Weierstrass: determinant theory and its historical evaluations, p. 51–66
  12. (en) Thomas Hawkins, Cauchy and the spectral theory of matrices, vol. 2, Historia Mathematica, , 1–29 p. (0315-0860, 10.1016/0315-0860(75)90032-4)
  13. (de) Kurt Hensel, Leopold Kronecker's Werke, Teubner, (lire en ligne)
  14. (de) Karl Weierstrass, Collected works, vol. 3, (lire en ligne), p. 271–286
  15. « Let us give the name of matrix to any function, of however many variables, which does not involve any apparent variables. Then any possible function other than a matrix is derived from a matrix by means of generalization, i.e., by considering the proposition which asserts that the function in question is true with all possible values or with some value of one of the arguments, the other argument or arguments remaining undetermined » . Alfred North Whitehead et Bertrand Russell, Principia Mathematica to *56, Cambridge at the University Press, Cambridge UK (1913, réédition de 1962) voir page 162.
  16. (en) Alfred Tarski, Introduction to Logic and the Methodology of Deductive Sciences, Dover Publications, Inc, New York NY, 1946 (ISBN lire en ligne)
  17. Voir Bourbaki, Algèbre, Chapitres 1 à 3, Springer, , 2e Springer, , 2e lire en ligne), A II.139, qui parle aussi de « matrice vide » dans le cas où I ou J est l'ensemble vide.
  18. On peut remarquer que ce produit est donné par une formule analogue à celle donnant le produit scalaire usuel ; cette remarque sera exploitée plus loin.
  19. Dans le cas plus général d'ensembles éventuellement infinis d'indices, on peut demander à K d'être muni d'une topologie, pour définir le produit comme la somme d'une série (convergente). Sans topologie, on peut également demander aux colonnes (ou aux lignes) des matrices de ne contenir qu'un nombre fini d'éléments non nuls ; c'est d'ailleurs toujours le cas quand ces matrices représentent des applications linéaires entre espaces vectoriels munis de bases, même infinies. Paul Halmos, qui donne ces diverses définitions, ajoute néanmoins que « Not much of matrix theory carries over to infinite-dimensional spaces, and what does is not so useful, but it sometimes helps. » (la théorie des matrices s'étend peu aux espaces de dimension infinie, et ce qui s'étend n'est guère utile, mais peut parfois aider), dans P. Halmos, A Hilbert space problem book, 1982, p. 23.
  20. a et b Cette définition et les propriétés associées se généralisent à des K-modules à droite libres de type fini sur un anneau (non nécessairement commutatif).
  21. Voir par exemple : (en) Henri Bourlès et Bogdan Marinescu, Linear Time-Varying Systems: Algebraic-Analytic Approach, Springer, , 638 p. (ISBN lire en ligne), §§ 2.2.4-2.2.6 ; cette formulation est très courante dans la théorie des D-modules.
  22. J. von Neumann (1937). Some matrix inequalities and metrization of matrix-space. Tomsk University Review, 1, 286–300. Collected Works, Pergamon, Oxford, 1962, Volume IV, 205-218

Voir aussi

Sur les autres projets Wikimedia :

Bibliographie

  • J.-M. Arnaudiès et H. Fraysse Cours de mathématiques, Dunod, 1980
  • Rached Mneimné, Réduction des endomorphismes, Calvage et Mounet, Paris, 2006 (ISBN 978-2-916352-01-5)
  • P. Wira, Un rappel sur les matrices, support de cours, Université de Haute Alsace, Mulhouse, 2000

Articles connexes

Liens externes

Frédéric Brechenmacher, Les matrices : formes de représentation et pratiques opératoires (1850-1930)