Groupe cyclique

En mathématiques et plus précisément en théorie des groupes, un groupe cyclique est un groupe qui est à la fois fini et monogène[1], c'est-à-dire qu'il existe un élément a du groupe tel que tout élément du groupe puisse s'exprimer sous forme d'un multiple de a (en notation additive, ou comme puissance en notation multiplicative) ; cet élément a est appelé générateur du groupe.

Il n'existe, à isomorphisme près, pour tout entier n > 0, qu'un seul groupe cyclique d'ordre n : le groupe quotient ℤ/n — également noté ℤn ou Cn — de ℤ par le sous-groupe des multiples de n.

Les groupes cycliques sont importants en algèbre. On les retrouve, par exemple, en théorie des anneaux et en théorie de Galois.

Applications

Géométrie

Théorie des groupes

Les groupes monogènes sont importants pour l'étude des groupes abéliens de type fini : tous sont des produits directs de groupes monogènes (dont certains peuvent être monogènes infinis c'est-à-dire isomorphes à ℤ). En particulier, les groupes abéliens finis sont classifiés par le théorème de Kronecker. Dans le cas des groupes finis non abéliens, le théorème de Cauchy montre l'existence de nombreux sous-groupes cycliques. Ce théorème est utilisé pour la classification des groupes finis, même si souvent, certaines formes plus élaborées sont utilisées comme les trois théorèmes de Sylow.

Arithmétique

Article détaillé : arithmétique modulaire.

En arithmétique ces groupes offrent un large répertoire d'outils et permettent de nombreuses démonstrations. Ces outils sont regroupés dans une branche des mathématiques nommée arithmétique modulaire. Ils se fondent sur l'étude des congruences sur l'anneau des entiers. On peut citer comme exemple le petit théorème de Fermat ou encore le théorème des deux carrés de Fermat avec la démonstration de Richard Dedekind. On peut encore citer la loi de réciprocité quadratique qui repose sur des structures de groupes cycliques. Il existe de nombreux cas où le groupe sous-jacent est non monogène, mais seulement abélien de type fini, ce qui s'y ramène par produit. On le trouve par exemple dans le théorème de la progression arithmétique ou le théorème des unités de Dirichlet.

Théorie des anneaux

Les groupes monogènes jouent un rôle dans la théorie des anneaux particulièrement dans le cas des anneaux unitaires. En effet, l'unité de l'anneau engendre (pour l'addition) un groupe monogène, permettant de définir la caractéristique d'un anneau.

Théorie de Galois

Dans le cas particulier des corps commutatifs, les groupes cycliques ont aussi un rôle fondamental. Toute extension de corps possède un groupe associé nommé groupe de Galois. Le théorème d'Abel-Ruffini indique que les propriétés de commutativité sont essentielles pour comprendre la théorie des équations. Le théorème de Kronecker-Weber montre que la compréhension de la résolution des équations algébriques est essentiellement liée à la structure des extensions cyclotomiques dont le groupe de Galois est cyclique.

La théorie de Galois permet aussi de construire tous les corps finis, intimement associés à la structure de groupes cycliques. Ainsi le groupe additif est un produit direct de plusieurs occurrences d'un groupe cyclique et le groupe multiplicatif est cyclique.

Théorie de l'information

La théorie de l'information utilise largement les groupes cycliques. Un élément essentiel de la cryptologie se fonde sur le fait qu'il est relativement simple de construire un grand nombre premier mais difficile de décomposer un grand nombre en nombres premiers. Ce principe est à la base du chiffrement RSA. Les algorithmes de décomposition, nommés test de primalité se fondent très généralement sur les groupes cycliques. On peut citer comme exemple ceux de Fermat, de Miller-Rabin ou encore de Solovay-Strassen.

La théorie des codes correcteurs, visant à assurer non pas la sécurité mais la fiabilité, n'est pas en reste. La grande majorité des codes utilisés dans l'industrie font partie de la famille des codes cycliques s'appuyant sur divers groupes cycliques.

Théorème fondamental

Les groupes cycliques possèdent une structure telle que les puissances (en notation multiplicative) d'un élément bien choisi, engendrent tout le groupe. Cette situation est illustrée dans la figure suivante, qui présente le graphe des cycles du groupe cyclique Cn, pour les premières valeurs de n.

L'élément neutre est représenté par un point noir ; un élément générateur peut être obtenu en prenant (par exemple) le premier élément en tournant vers la droite ; le carré de cet élément générateur s'obtient en tournant toujours dans la même direction, et ainsi de suite. Le (n+1)-ième élément est égal au premier, le (n+2)-ième au 2e, et ainsi de suite.

Cn désigne le groupe cyclique d'ordre n.

GroupDiagramMiniC1.svg
GroupDiagramMiniC2.svg
GroupDiagramMiniC3.svg
GroupDiagramMiniC4.svg
GroupDiagramMiniC5.svg
GroupDiagramMiniC6.svg
GroupDiagramMiniC7.svg
GroupDiagramMiniC8.svg
C1C2C3C4C5C6C7C8

Tout quotient d'un groupe monogène est monogène (la classe du générateur engendre le groupe quotient), en particulier tout quotient du groupe (ℤ, +). Les groupes monogènes sont tous obtenus de cette façon :

Un groupe est monogène (si et) seulement s'il est isomorphe à (ℤ/nℤ, +) pour un certain entier naturel n.

Ce théorème montre que ce groupe est unique pour un ordre donné et élucide complètement sa structure. Quelques corollaires en découlent immédiatement :

  • Tout groupe monogène est abélien.
  • Le nombre de générateurs d'un groupe cyclique d'ordre n est égal à φ(n), où φ désigne l'indicatrice d'Euler.

Propriétés

Sous-groupes

La structure du treillis des sous-groupes d'un groupe monogène ℤ/nℤ est simple :

  • Les sous-groupes d'un groupe monogène sont monogènes (en particulier, les sous-groupes de ℤ sont les parties de la forme dℤ avec d entier).
  • Si n ≠ 0, pour tout diviseur positif d de n, le sous-groupe de ℤ/nℤ engendré par la classe de n/d est l'unique sous-groupe d'ordre d.

On en déduit :

,

équation qui fournit en retour une réciproque[3] :

Pour qu'un groupe G d'ordre n soit cyclique, il suffit que pour tout diviseur d de n, G possède au plus un sous-groupe cyclique d'ordre d.

En particulier, tout groupe d'ordre premier est cyclique[4]. Autrement dit : tout nombre premier est un nombre cyclique.

Ceci permet également de montrer que tout sous-groupe fini du groupe multiplicatif d'un corps commutatif est cyclique[3].