Cône (géométrie)

Page d'aide sur l'homonymie Pour les articles homonymes, voir Cône (inclut d'autres significations mathématiques).
Illustration à l'article Problemata mathematica... publiée sur les Acta Eruditorum, 1734

En géométrie, un cône est une surface réglée ou bien un solide.

Surface

Cas général

Cones geometrie.png

Un cône est une surface réglée définie par une droite (d), appelée génératrice, passant par un point fixe S appelé sommet et un point variable décrivant une courbe (c), appelée courbe directrice.

On parle aussi dans ce cas de surface conique.

Cône de révolution

Article détaillé : Cône de révolution.

Parmi ces surfaces coniques, la plus étudiée est le cône de révolution dans lequel la courbe directrice est un cercle de centre O situé dans un plan perpendiculaire à (SO). Ce cône est appelé de révolution car il peut être généré simplement par la rotation d'une droite (d) passant par S autour d'un axe (Sz) différent de (d). La génératrice du cône fait alors un angle fixe avec l'axe de rotation.

C'est à partir de ce cône de révolution que les mathématiciens (dont Apollonius de Perga) ont classifié un ensemble de courbes comme des coniques (intersection du cône et d'un plan) : cercles, ellipses, paraboles, hyperboles.

Dans le repère orthonormal (S, i, j, k), l'équation du cône de révolution d'axe (Sz) et de sommet S est donnée par :

est l'angle du cône (ou demi-angle au sommet), formé par l'axe de révolution et une génératrice.

Sections d'un cône de révolution par un plan

Intersection d'un plan et d'un cône de révolution.

Dans les cas où le plan est parallèle ou perpendiculaire à l'axe de révolution du cône on obtient les courbes suivantes :

  • La section d'un cône de révolution par un plan perpendiculaire à l'axe de révolution est un cercle.
  • La section d'un cône de révolution par un plan parallèle à l'axe de révolution est
    • l'union de deux droites sécantes si le plan contient l'axe de révolution
    • une hyperbole dans le cas contraire

Plus généralement, la section d'un cône de révolution par un plan donne une conique. Ainsi on trouve,

  • une parabole (réduite éventuellement à une génératrice) lorsque le plan est strictement parallèle à une génératrice du cône
  • une ellipse (éventuellement réduite à un point) quand l'angle que forme le vecteur normal au plan et l'axe de rotation est inférieur à π/2 - α
  • une hyperbole (éventuellement réduite à deux droites sécantes) quand l'angle que forme le vecteur normal au plan et l'axe de rotation est supérieur à π/2 - α

Solide

Cas général

Cône de révolution et cône quelconque.

On appelle aussi cône le solide délimité par la surface conique, le sommet S et un plan (P) ne contenant pas S et sécant à toutes les génératrices. La section du plan et de la surface s'appelle la base du cône.

Lorsque la section est circulaire de centre O et que la droite (OS) est perpendiculaire à la section, le cône est appelé cône de révolution ou cône circulaire droit. C'est le cône le plus connu (cornet de glace, chapeau de clown). Dans ce cas, la distance séparant le sommet d'un point quelconque du cercle est constante et s'appelle l'apothème du cône.

Lorsque la courbe fermée est un polygone, on obtient une pyramide.

Volume

Quelle que soit la forme du cône, son volume est toujours le tiers du volume d'un cylindre de mêmes base et hauteur :B est l'aire de la base et h la hauteur du cône, c'est-à-dire la distance séparant le sommet S et le plan (P).