Énergie d'ionisation

Le potentiel d'ionisation ou énergie d'ionisation d'un atome ou d'une molécule est l'énergie qu'il faut fournir à un atome neutre pour arracher un électron (le moins lié) à l'état gazeux et former un ion positif. Plus généralement, la nième énergie d'ionisation est l'énergie requise pour arracher le nième électron après que les n-1 premiers électrons ont été arrachés. En chimie physique, le concept d'énergie d'ionisation est l'opposé de celui d'affinité électronique, c'est-à-dire l'énergie dégagée lorsqu'un atome neutre capte un électron et forme un ion négatif.

La réaction de première ionisation de l'atome A s'écrit :

0,0528 nm

L'énergie d'ionisation en mécanique quantique

Aux atomes à plus qu'un électron et aux molécules, le modèle de Bohr n'est pas adéquat et la prévision exacte des énergies d'ionisation exigent la théorie de la mécanique quantique, mieux décrite par le modèle de Schrödinger. Dans cette théorie, la localisation de l'électron est décrite non pas de façon déterministe, mais comme un « nuage » de localisations dotées d'une certaine probabilité d'être plus ou moins près du noyau. Cette approche plus rigoureuse est compliquée, mais on peut donner quelques pistes pour l'aborder : Le nuage correspond à une fonction d'onde ou, plus précisément à une combinaison linéaire des déterminants de Slater, c'est-à-dire, selon le principe d'exclusion de Pauli, des produits antisymétriques des orbitales atomiques ou des orbitales moléculaires. Cette combinaison linéaire est un développement en interaction de configurations de la fonction d'onde électronique.

Dans le cas général, pour calculer la nième énergie d'ionisation, il faut soustraire l'énergie d'un système de électrons d'un système de électrons. Le calcul de ces énergies n'est pas simple, mais il s'agit d'un problème assez classique en chimie numérique. En première approximation, l'énergie d'ionisation peut être déduite du théorème de Koopmans.

Références

  1. (en) David R. Lide, CRC Handbook of Chemistry and Physics, Boca Raton, CRC Press Inc, , 90e éd., 2804 p., Relié (ISBN 978-1-4200-9084-0)
  2. (en) Measurement of the first ionization potential of astatine by laser ionization spectroscopy Valeur pour l'astate (At) - S.Rothe et al., Nature Commun. 4, 1835 (2013)
  3. Richard P. Feynman, Le cours de physique de Feynman (5 vol.), InterÉditions, réédité par Dunod. Traduction française de Lectures on physics, vol. Mécanique quantique (ISBN 2-10-004934-8), p. 24-25.

Articles connexes